Designs for Learning Analytics to Support Information Problem SolvingPhilip H. Winne, Jovita M. Vytasek, Alexandra Patzak, Mladen Rakovic, Zahia Marzouk, Azar Pakdaman-Savoji
Zu finden in: Informational Environments (Seite 249 bis 272), 2017
|
|
Diese Seite wurde seit 6 Jahren inhaltlich nicht mehr aktualisiert.
Unter Umständen ist sie nicht mehr aktuell.
Zusammenfassungen
Chapter 11 (Winne et al., 2017) has a unique focus in investigating technologies
that support learners over longer stretches of time (up to several months) while
they are traversing their informational environments. The concrete learning context
presented in this chapter is the assignment to create a term paper, an activity that
is referred to as information problem solving. The adaptive learning environment is
based on nStudy, a tool that captures the complete and detailed history of a learner’s
online activities. Through learning analytics, aggregated data from nStudy can then
be fed back to the learner in order to assist and support self-regulated activities over
various stages of information problem solving (assistive adaptivity).
Von Jürgen Buder, Friedrich W. Hesse im Buch Informational Environments (2017) im Text Informational Environments Learners working on major learning projects, such as an undergraduate thesis, frequently engage in information problem solving (IPS). In round-trip IPS, learners set goals and develop a work plan, search for and filter sources, critically analyze and mine key information, and draft and revise a final product. Information problem solving is a prime site for self-regulated learning (SRL) whereby learners formulate and carry out self-designed experiments to improve IPS skills and expand knowledge about the topic of the learning project. We describe nStudy, a software system developed to gather ambient trace data that operationally define features of IPS and SRL as learners work on learning projects. We illustrate how trace data can be used to promote learners´ (a) understanding of the topic of a learning project and (b) development of IPS by generating learning analytics, guidance in the form of quantitative and qualitative accounts describing information learners work with and operations they apply to information. Three main challenges are addressed: learning how to plan a learning project, expanding knowledge of the topic of a learning project, and benefiting from and productively contributing to peer reviews of draft products. We conjecture about an emerging ecology for IPS in which big data and learning analytics can be major resources for education.
Von Philip H. Winne, Jovita M. Vytasek, Alexandra Patzak, Mladen Rakovic, Zahia Marzouk, Azar Pakdaman-Savoji et al. im Buch Informational Environments (2017) im Text Designs for Learning Analytics to Support Information Problem Solving Dieses Kapitel erwähnt ...
Anderswo finden
Volltext dieses Dokuments
Designs for Learning Analytics to Support Information Problem Solving: Artikel als Volltext bei Springerlink (: , 214 kByte; : ) |
Anderswo suchen
Beat und dieses Kapitel
Beat hat Dieses Kapitel während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Er hat Dieses Kapitel einmalig erfasst und bisher nicht mehr bearbeitet. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Aufgrund der wenigen Einträge im Biblionetz scheint er es nicht wirklich gelesen zu haben. Es gibt bisher auch nur wenige Objekte im Biblionetz, die dieses Werk zitieren.