/ en / Traditional / help

Beats Biblionetz - Texte

Learning in Distributed Low-Stakes Teams

Stephen MacNeil, Celine Latulipe, Aman Yadav
Zu finden in: ICER 2015 (Seite 227 bis 236), 2015
Erste Seite des Textes (PDF-Thumbnail)
Diese Seite wurde seit mehr als 7 Monaten inhaltlich nicht mehr aktualisiert. Unter Umständen ist sie nicht mehr aktuell.


Active learning is important in computer science education, where students often don't have enough opportunities for social learning and development of soft skills. Flipped classrooms can provide social interaction through approaches such as lightweight teams [23], where students collaborate during class in low-stakes peer learning. These teams scaffold positive interdependence [17] by removing high-stakes assignments that heavily impact student's grades.

Given the proliferation of online courses, and MOOCs in particular, it is important to consider whether successful face-to-face pedagogical strategies can be reappropriated for distributed, online contexts. Specifically, we are interested in whether a low-stakes model could provide similar learning benefits when team members collaborate remotely.

This paper presents results from a study that analyzed the efficacy of low-stakes distributed teams. We examined whether low-stakes teams that communicate through Google Hangouts can provide educational benefits, in terms of both engagement and learning outcomes, compared to students who are learning via video in a co-located setting or individually. Results suggest that co-located teams have the highest learning gains, but there are no significant differences between distributed teams and individual work. We discuss implications of these results for practice and future research.

Von Stephen MacNeil, Celine Latulipe, Aman Yadav im Konferenz-Band ICER 2015 im Text Learning in Distributed Low-Stakes Teams (2015)

iconDieses Konferenz-Paper erwähnt ...

iconAnderswo finden


iconVolltext dieses Dokuments

LokalAuf dem WWW Learning in Distributed Low-Stakes Teams: Fulltext at the ACM Digital Library (lokal: PDF, 923 kByte; WWW: Link OK 2020-11-28)

iconAnderswo suchen  Auch im Biblionetz finden Sie nicht alles. Aus diesem Grund bietet das Biblionetz bereits ausgefüllte Suchformulare für verschiedene Suchdienste an. Biblionetztreffer werden dabei ausgeschlossen.

iconBiblionetz-History Dies ist eine graphische Darstellung, wann wie viele Verweise von und zu diesem Objekt ins Biblionetz eingetragen wurden und wie oft die Seite abgerufen wurde.