/ en / Traditional / help

Beats Biblionetz - Begriffe

Torrance Test of Creative Testing (TTCT)

Diese Seite wurde seit 2 Jahren inhaltlich nicht mehr aktualisiert. Unter Umständen ist sie nicht mehr aktuell.

iconBiblioMap Dies ist der Versuch, gewisse Zusammenhänge im Biblionetz graphisch darzustellen. Könnte noch besser werden, aber immerhin ein Anfang!

Diese Grafik ist nur im SVG-Format verfügbar. Dieses Format wird vom verwendeteten Browser offenbar nicht unterstützt.

Diese SVG-Grafik fensterfüllend anzeigen

iconSynonyme

Torrance Test of Creative Testing, TTCT

iconDefinitionen

The App GenerationPerhaps the most widely used creativity test is the Torrance Test of Creative Thinking (TTCT). Developed in 1966 and currently used worldwide, the TTCT measures several dimensions of creative potential, including intellectual curiosity, open-mindedness, verbal expressiveness, and originality. Though not without its critics, the TTCT has been found to predict creative achievement better than other standard measures of creative or divergent thinking.7 Empirical evidence suggests that high scores on the test successfully predict subsequent creative careers and accomplishments.8
Von Howard Gardner, Katie Davis im Buch The App Generation (2013)
The TTCT offers a suite of authentic activities that prompt the test-taker to engage in various types of thinking that mirror the kinds of creativity required for real-life and daily human operations, including asking questions, guessing causes and consequences, improving a product, and utilizing imagination (STS, 2017). In total, the TTCT includes six distinct creative activities designed to evaluate the operation of creativity as it is often used in business and everyday life. In addition to a standard Alternative Uses Task (Unusual Uses), the TTCT also includes tasks to evaluate Asking Questions, Guessing Causes, Guessing Consequences, and Product Improvement.
Von Erik E. Guzik, Christian Byrge, Christian Gilde im Text The originality of machines (2023)

iconBemerkungen

The strength of the TTCT is its large database of historical human responses that can be used as a control and comparison group. This has become possible because of its consistency in using the same demographic makeup of test-tasker for decades and because responses have been systematically collected for scoring.
Von Erik E. Guzik, Christian Byrge, Christian Gilde im Text The originality of machines (2023)
The TTCT is a commercially protected assessment instrument, therefore prompts are not accessible to ChatGPT or any other AI system, or publicly available in general. This offers a unique opportunity to test ChatGPT using specific prompts that it likely has never been asked before. ChatGPT will have to generate the responses, not simply retrieve them from ist database.
Von Erik E. Guzik, Christian Byrge, Christian Gilde im Text The originality of machines (2023)
Current product-based measures like the TTCT also raise interesting questions about creativity assessment in general. For example, which human raters are capable of best measuring human creativity? And which of these raters are capable of measuring AI creativity? In addition, is a truly accurate and unbiased assessment of creativity and originality possible within current assessments? A study by Licuanan et al. (2007) found that participants preferred ideas of low originality when evaluating highly original ideas. They also found that ideas of high originality were discounted because raters lacked the knowledge for accurately recognizing the originality of these ideas.
Von Erik E. Guzik, Christian Byrge, Christian Gilde im Text The originality of machines (2023)
While the TTCT has long been considered a valid and reliable measure of creativity, the results of GPT-4 testing may simply highlight the limitations of existing creativity assessments. Although GPT-4 demonstrated high fluency, flexibility, and originality, assessments such as the TTCT may not fully capture the nuances and complexities of human creativity especially as related to person, process, and press—in this respect, current human scores on tests such as the TTCT may understate or incompletely measure human creativity. Further, the performance of GPT-4 could suggest that traditional creativity assessments need to be revised to differentiate between human and AI-generated creative outputs and evaluate other aspects of creativity beyond those currently assessed, including processes of convergent thinking.
Von Erik E. Guzik, Christian Byrge, Christian Gilde im Text The originality of machines (2023)

iconVerwandte Objeke

icon
Verwandte Begriffe
(co-word occurance)

iconHäufig co-zitierte Personen

Robert J. Sternberg Robert J.
Sternberg
Gerhard Fischer Gerhard
Fischer
M. Czerwinski M.
Czerwinski
Brad Myers Brad
Myers
Ben Shneiderman Ben
Shneiderman
Mitchel Resnick Mitchel
Resnick

iconStatistisches Begriffsnetz  Dies ist eine graphische Darstellung derjenigen Begriffe, die häufig gleichzeitig mit dem Hauptbegriff erwähnt werden (Cozitation).

iconZitationsgraph

Diese Grafik ist nur im SVG-Format verfügbar. Dieses Format wird vom verwendeteten Browser offenbar nicht unterstützt.

Diese SVG-Grafik fensterfüllend anzeigen

iconErwähnungen  Dies ist eine nach Erscheinungsjahr geordnete Liste aller im Biblionetz vorhandenen Werke, die das ausgewählte Thema behandeln.

iconAnderswo suchen  Auch im Biblionetz finden Sie nicht alles. Aus diesem Grund bietet das Biblionetz bereits ausgefüllte Suchformulare für verschiedene Suchdienste an. Biblionetztreffer werden dabei ausgeschlossen.

iconBiblionetz-History Dies ist eine graphische Darstellung, wann wie viele Verweise von und zu diesem Objekt ins Biblionetz eingetragen wurden und wie oft die Seite abgerufen wurde.