Dialect prejudice predicts AI decisions about people's character, employability, and criminalityValentin Hofmann, Pratyusha Ria Kalluri, Dan Jurafsky, Sharese King
Publikationsdatum:
|
|
Diese Seite wurde seit mehr als 7 Monaten inhaltlich nicht mehr aktualisiert.
Unter Umständen ist sie nicht mehr aktuell.
Zusammenfassungen
Hundreds of millions of people now interact with language models, with uses ranging from serving as a writing aid to informing hiring decisions. Yet these language models are known to perpetuate systematic racial prejudices, making their judgments biased in problematic ways about groups like African Americans. While prior research has focused on overt racism in language models, social scientists have argued that racism with a more subtle character has developed over time. It is unknown whether this covert racism manifests in language models. Here, we demonstrate that language models embody covert racism in the form of dialect prejudice: we extend research showing that Americans hold raciolinguistic stereotypes about speakers of African American English and find that language models have the same prejudice, exhibiting covert stereotypes that are more negative than any human stereotypes about African Americans ever experimentally recorded, although closest to the ones from before the civil rights movement. By contrast, the language models' overt stereotypes about African Americans are much more positive. We demonstrate that dialect prejudice has the potential for harmful consequences by asking language models to make hypothetical decisions about people, based only on how they speak. Language models are more likely to suggest that speakers of African American English be assigned less prestigious jobs, be convicted of crimes, and be sentenced to death. Finally, we show that existing methods for alleviating racial bias in language models such as human feedback training do not mitigate the dialect prejudice, but can exacerbate the discrepancy between covert and overt stereotypes, by teaching language models to superficially conceal the racism that they maintain on a deeper level. Our findings have far-reaching implications for the fair and safe employment of language technology.
Von Valentin Hofmann, Pratyusha Ria Kalluri, Dan Jurafsky, Sharese King im Text Dialect prejudice predicts AI decisions about people's character, employability, and criminality (2024) Dieser Text erwähnt ...
Personen KB IB clear | Sandhini Agarwal , Dario Amodei , Amanda Askell , Maria Bannert , Emily M. Bender , Christopher Berner , Tom B. Brown , Caitlin Ring Carlson , Mark Chen , Benjamin Chess , Rewon Child , Jack Clark , Daryna Dementieva , Kewal Dhariwal , Prafulla Dhariwal , Frank Fischer , Urs Gasser , Timnit Gebru , Scott Gray , Georg Groh , Stephan Günnemann , Tom Henighan , Ariel Herbert-Voss , Christopher Hesse , Eyke Hüllermeier , Jared Kaplan , Gjergji Kasneci , Enkelejda Kasneci , Gretchen Krueger , Stephan Krusche , Stefan Küchemann , Jochen Kuhn , Gitta Kutyniok , Mateusz Litwin , Benjamin Mann , Sam McCandlish , Angelina McMillan-Major , Tilman Michaeli , Arvind Neelakantan , Claudia Nerdel , OpenAI , Jürgen Pfeffer , Oleksandra Poquet , Alec Radford , Aditya Ramesh , Nick Ryder , Michael Sailer , Girish Sastry , Albrecht Schmidt , Tina Seidel , Kathrin Sessler , Shmargaret Shmitchell , Pranav Shyam , Eric Sigler , Matthias Stadler , Melanie Subbiah , Ilya Sutskever , Jochen Weller , Clemens Winter , Jeffrey Wu , Daniel M. Ziegler | ||||||||||||||||||||||||||||||||||||
Aussagen KB IB clear | Machine Learning kann bestehende Vorurteile/Ungerechtigkeiten verstärken/weitertragen | ||||||||||||||||||||||||||||||||||||
Begriffe KB IB clear | bias , Generative Machine-Learning-Systeme (GMLS)computer-generated text , Rassismus , Sprachelanguage | ||||||||||||||||||||||||||||||||||||
Bücher |
| ||||||||||||||||||||||||||||||||||||
Texte |
|
Dieser Text erwähnt vermutlich nicht ...
Nicht erwähnte Begriffe | Chat-GPT, GMLS & Bildung |
Zitationsgraph
Zitationsgraph (Beta-Test mit vis.js)
Volltext dieses Dokuments
Dialect prejudice predicts AI decisions about people's character, employability, and criminality: Artikel als Volltext (: , 8142 kByte; : ) |
Anderswo suchen
Beat und dieser Text
Beat hat Dieser Text während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Er hat Dieser Text einmalig erfasst und bisher nicht mehr bearbeitet. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Es gibt bisher nur wenige Objekte im Biblionetz, die dieses Werk zitieren.