ChatGPT for Good?On Opportunities and Challenges of Large Language Models for Education
Enkelejda Kasneci, Kathrin Sessler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, Stephan Krusche, Gitta Kutyniok, Tilman Michaeli, Claudia Nerdel, Jürgen Pfeffer, Oleksandra Poquet, Michael Sailer, Albrecht Schmidt, Tina Seidel, Matthias Stadler, Jochen Weller, Jochen Kuhn, Gjergji Kasneci
Publikationsdatum:
|
|
Zusammenfassungen
Large language models represent a significant advancement in the field of AI. The underlying technology is key
to further innovations and, despite critical views and even bans within communities and regions, large language
models are here to stay. This position paper presents the potential benefits and challenges of educational
applications of large language models, from student and teacher perspectives. We briefly discuss the current
state of large language models and their applications. We then highlight how these models can be used to create
educational content, improve student engagement and interaction, and personalize learning experiences. With
regard to challenges, we argue that large language models in education require teachers and learners to develop
sets of competencies and literacies necessary to both understand the technology as well as their limitations and
unexpected brittleness of such systems. In addition, a clear strategy within educational systems and a clear
pedagogical approach with a strong focus on critical thinking and strategies for fact checking are required to
integrate and take full advantage of large language models in learning settings and teaching curricula. Other
challenges such as the potential bias in the output, the need for continuous human oversight, and the potential
for misuse are not unique to the application of AI in education. But we believe that, if handled sensibly, these
challenges can offer insights and opportunities in education scenarios to acquaint students early on with potential
societal biases, criticalities, and risks of AI applications. We conclude with recommendations for how to address
these challenges and ensure that such models are used in a responsible and ethical manner in education.
Von Kathrin Sessler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, Stephan Krusche, Gitta Kutyniok, Tilman Michaeli, Claudia Nerdel, Jürgen Pfeffer, Oleksandra Poquet, Michael Sailer, Albrecht Schmidt, Tina Seidel, Matthias Stadler, Jochen Weller, Jochen Kuhn, Gjergji Kasneci, Enkelejda Kasneci im Text ChatGPT for Good? (2023) Dieser Text erwähnt ...
Personen KB IB clear | Sandhini Agarwal , Dario Amodei , Amanda Askell , Christopher Berner , Maya Bialik , Tom B. Brown , Mark Chen , Benjamin Chess , Rewon Child , Jack Clark , Kewal Dhariwal , Prafulla Dhariwal , Charles Fadel , Aidan N. Gomez , Scott Gray , Tom Henighan , Ariel Herbert-Voss , Christopher Hesse , Wayne Holmes , Llion Jones , Lukasz Kaiser , Jared Kaplan , Gretchen Krueger , Mateusz Litwin , Benjamin Mann , Sam McCandlish , Arvind Neelakantan , Niki Parmar , Illia Polosukhin , Alec Radford , Aditya Ramesh , Nick Ryder , Girish Sastry , Noam Shazeer , Pranav Shyam , Eric Sigler , Melanie Subbiah , Ilya Sutskever , Jakob Uszkoreit , Ashish Vaswani , Clemens Winter , Jeffrey Wu , Daniel M. Ziegler | |||||||||||||||||||||||||||
Begriffe KB IB clear | Bildungeducation (Bildung) , Chat-GPT , Computercomputer , Generative Machine-Learning-Systeme (GMLS)computer-generated text , Generative Pretrained Transformer 3 (GPT-3) , GMLS & Bildung , GPT Zero , GPT-2 , Innovationinnovation , LehrerInteacher , Lernenlearning , Mathematikmathematics , perplexity , supervised learning | |||||||||||||||||||||||||||
Bücher |
| |||||||||||||||||||||||||||
Texte |
|
Dieser Text erwähnt vermutlich nicht ...
Tagcloud
Zitationsgraph
Zitationsgraph (Beta-Test mit vis.js)
Zeitleiste
15 Erwähnungen
- Didaktische und rechtliche Perspektiven auf KI-gestütztes Schreiben in der Hochschulbildung (Peter Salden, Jonas Leschke) (2023)
- ChatGPT und andere Computermodelle zur Sprachverarbeitung - Grundlagen, Anwendungspotenziale und mögliche Auswirkungen (Steffen Albrecht) (2023)
- Hochschulbildung vor dem Hintergrund von Natural Language Processing (KI-Schreibtools) (Isabella Buck, Anika Limburg) (2023)
- Generative künstliche Intelligenz in der Hochschullehre - Positionspapier der HSLU (Stefan Jörissen, David Loher) (2023)
- Künstliche Intelligenz in der Bildung - Positionspapier der Gesellschaft für Informatik e.V. (GI) (Steffen Jaschke, Matthias Klusch, Daniel Krupka, Daniel Losch, Tilman Michaeli, Simone Opel, Ute Schmid, Richard Schwarz, Stefan Seegerer, Peer Stechert) (2023)
- KI für Lehrkräfte - ein offenes Lehrbuch (Colin de la Higuera, Jotsna Iyer) (2024)
- Large Language Models und ihre Potenziale im Bildungssystem - Impulspapier der Ständigen Wissenschaftlichen Kommission der Kultusministerkonferenz (SWK Ständige Wissenschaftliche Kommission der KMK) (2024)
- Dialect prejudice predicts AI decisions about people's character, employability, and criminality (Valentin Hofmann, Pratyusha Ria Kalluri, Dan Jurafsky, Sharese King) (2024)
- Pädagogik 3/2024 - KI in der Schule (2024)
- KI ist in der Schule angekommen (Matthias Trautmann) (2024)
- Wie funktionieren ChatGPT und Co eigentlich? (Enkelejda Kasneci) (2024)
- Spannungsfeld der digitalen Kompetenz - MedienPädagogik Heft 58 (2024)
- Künstliche Intelligenz im Kontext von Kompetenzen, Prüfungen und Lehr-Lern-Methoden: Alte und neue Gestaltungsfragen (Maria Klar, Johannes Schleiss)
- The impact of generative artificial intelligence on socioeconomic inequalities and policymaking (Valerio Capraro, Austin Lentsch, Daron Acemoglu, Selin Akgun, Aisel Akhmedova, Ennio Bilancini, Jean-François Bonnefon, Pablo Brañas-Garza, Luigi Butera, Karen Douglas, Jim Everett, Gerd Gigerenzer, Christine Greenhow, Daniel Hashimoto, Julianne Holt-Lunstad, Jolanda Jetten, Simon Johnson, Werner Kunz, Chiara Longoni, Pete Lunn, Simone Natale, Stefanie Paluch, Iyad Rahwan, Neil Selwyn, Vivek Singh, Siddharth Suri, Jennifer Sutcliffe, Joe Tomlinson, Sander van der Linden, Paul Van Lange, Friederike Wall, Jay Van Bavel, Riccardo Viale) (2024)
- A real-world test of artificial intelligence infiltration of a university examinations system - A “Turing Test” case study (Peter Scarfe, Kelly Watcham, Alasdair Clarke, Etienne Roesch) (2024)
- Generative KI-Systeme in der Lehre systematisch anleiten (Timon Rimensberger) (2024)
- Jahrbuch Medienpädagogik 21 (Claudia de Witt, Sandra Hofhues, Mandy Schiefner, Valentin Dander, Nina Grünberger) (2024)
- Für eine ‹technologiebewusste Medienpädagogik› jenseits der Digitalisierung - Ein Weg in die Archive der Technizität (Christoph Richter, Heidrun Allert)
Anderswo finden
Volltext dieses Dokuments
ChatGPT for Good?: Artikel als Volltext (: , 194 kByte; : ) |
Anderswo suchen
Beat und dieser Text
Beat hat Dieser Text während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.).
Biblionetz-History
default1
default2
default3
default2
default3