Testing of Detection Tools for AI-Generated TextDebora Weber-Wulff, Alla Anohina-Naumeca, Sonja Bjelobaba, Tomáš Foltýnek, Jean Guerrero-Dib, Olumide Popoola, Petr Šigut, Lorna Waddington
Publikationsdatum:
|
|
Zusammenfassungen
Von Beat Döbeli Honegger, erfasst im Biblionetz am 04.07.2023
Recent advances in generative pre-trained transformer large language models have emphasised the potential risks of unfair use of artificial intelligence (AI) generated content in an academic environment and intensified efforts in searching for solutions to detect such content. The paper examines the general functionality of detection tools for artificial intelligence generated text and evaluates them based on accuracy and error type analysis. Specifically, the study seeks to answer research questions about whether existing detection tools can reliably differentiate between human-written text and ChatGPT-generated text, and whether machine translation and content obfuscation techniques affect the detection of AI-generated text. The research covers 12 publicly available tools and two commercial systems (Turnitin and PlagiarismCheck) that are widely used in the academic setting. The researchers conclude that the available detection tools are neither accurate nor reliable and have a main bias towards classifying the output as human-written rather than detecting Aigenerated text. Furthermore, content obfuscation techniques significantly worsen the performance of tools. The study makes several significant contributions. First, it summarises up-to-date similar scientific and non-scientific efforts in the field. Second, it presents the result of one of the most comprehensive tests conducted so far, based on a rigorous research methodology, an original document set, and a broad coverage of tools. Third, it discusses the implications and drawbacks of using detection tools for AI-generated text in academic settings.
Von Debora Weber-Wulff, Alla Anohina-Naumeca, Sonja Bjelobaba, Tomáš Foltýnek, Jean Guerrero-Dib, Olumide Popoola, Petr Šigut, Lorna Waddington im Text Testing of Detection Tools for AI-Generated Text (2023) Dieser Text erwähnt ...
Personen KB IB clear | Sandhini Agarwal , Dario Amodei , Amanda Askell , Emily M. Bender , Christopher Berner , Tom B. Brown , Mark Chen , Benjamin Chess , Rewon Child , Jack Clark , Kewal Dhariwal , Prafulla Dhariwal , Timnit Gebru , Aidan N. Gomez , Scott Gray , Tom Henighan , Ariel Herbert-Voss , Christopher Hesse , Llion Jones , Lukasz Kaiser , Jared Kaplan , Gretchen Krueger , Mateusz Litwin , Benjamin Mann , Sam McCandlish , Angelina McMillan-Major , Arvind Neelakantan , Niki Parmar , Illia Polosukhin , Alec Radford , Aditya Ramesh , Nick Ryder , Girish Sastry , Noam Shazeer , Shmargaret Shmitchell , Pranav Shyam , Eric Sigler , Melanie Subbiah , Ilya Sutskever , Jakob Uszkoreit , Ashish Vaswani , Clemens Winter , Jeffrey Wu , Daniel M. Ziegler | |||||||||||||||||||||||||||
Aussagen KB IB clear | Jede automatisierte KI-Erkennung lässt sich auch automatisiert umgehen | |||||||||||||||||||||||||||
Begriffe KB IB clear | Chat-GPT , false positive rate , Generative Machine-Learning-Systeme (GMLS)computer-generated text , GMLS-Detektor , GPT Zero , Künstliche Intelligenz (KI / AI)artificial intelligence , Originality.AI , Plagiarismusplagiarism , Prüfung , Turnitin | |||||||||||||||||||||||||||
Bücher |
| |||||||||||||||||||||||||||
Texte |
|
Dieser Text erwähnt vermutlich nicht ...
Nicht erwähnte Begriffe | Generative Pretrained Transformer 3 (GPT-3), Generative Pretrained Transformer 4 (GPT-4), GMLS & Bildung, GMLS & Schule |
Tagcloud
Zitationsgraph
Zitationsgraph (Beta-Test mit vis.js)
1 Erwähnungen
- GenAI Detection Tools Adversarial Techniques and Implications for Inclusivity in Higher Education (Mike Perkins, Jasper Roe, Binh H. Vu, Darius Postma, Don Hickerson, James McGaughran, Huy Q. Khuat) (2024)
Volltext dieses Dokuments
Testing of Detection Tools for AI-Generated Text: Artikel als Volltext (: , 12049 kByte; : ) |
Anderswo suchen
Beat und dieser Text
Beat hat Dieser Text während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Es gibt bisher nur wenige Objekte im Biblionetz, die dieses Werk zitieren.