Demystifying computational thinkingValerie J. Shute, Chen Sun, Jodi Asbell-Clarke
Erstpublikation in: Educational Research Review 22 (2017) 142e158
Publikationsdatum:
|
|
Zusammenfassungen
In this paper,we discuss the various definitions of CT emerging from different disciplines, and we present a definition of CT
in terms of how K-12 educators might think of building a solid foundation for CT in young learners.We break down CT into the
components most often cited in the literature and propose a model for embedding CT learning and assessment within K-12
curricula.
Von Valerie J. Shute, Chen Sun, Jodi Asbell-Clarke im Text Demystifying computational thinking (2017) In this paper, we intend to explore the scope and complexity of CT, and establish a clear definition and framework that
will aid in the development of CT pedagogy and assessment, particularly for K-12. At the end, we provide current research
examples and ideas for future research. Our review addresses the following questions:
Von Valerie J. Shute, Chen Sun, Jodi Asbell-Clarke im Text Demystifying computational thinking (2017) - What are the major characteristics and components of CT?
- What interventions are (or may be) used to train/enhance CT?
- What types of measures are used to assess CT? and
- What are the main theoretical frameworks/models of CT? Again, ourmain goal is to derive a general model of CT that may be used as a framework towards assessing and supporting CT. Our model is derived from an extensive literature review and serves to guide the development of CT pedagogy and assessment in educational settings.
This paper examines the growing field of computational thinking (CT) in education. A
review of the relevant literature shows a diversity in definitions, interventions, assessments,
and models. After synthesizing various approaches used to develop the construct in
K-16 settings, we have created the following working definition of CT: The conceptual
foundation required to solve problems effectively and efficiently (i.e., algorithmically, with
or without the assistance of computers) with solutions that are reusable in different
contexts. This definition highlights that CT is primarily a way of thinking and acting, which
can be exhibited through the use particular skills, which then can become the basis for
performance-based assessments of CT skills. Based on the literature, we categorized CT
into six main facets: decomposition, abstraction, algorithm design, debugging, iteration,
and generalization. This paper shows examples of CT definitions, interventions, assessments,
and models across a variety of disciplines, with a call for more extensive research in
this area.
Von Valerie J. Shute, Chen Sun, Jodi Asbell-Clarke im Text Demystifying computational thinking (2017) Dieser wissenschaftliche Zeitschriftenartikel erwähnt ...
Personen KB IB clear | Vicki H. Allan , Valerie Barr , Ashok R. Basawapatna , Vicki E. Bennett , Marina Umaschi Bers , Dennis Brylow , Quinn Burke , Shannon Campe , Damon Chizuru Kawamoto , Jill Denner , Louise P. Flannery , George H. L. Fletcher , Brendan Foreman , Susanne E. Hambrusch , Idit Harel , Andri Ioannidou , Yasmin B. Kafai , Elizabeth R. Kazakoff , Kyu Han Koh , James J. Lu , W. Ian O’Byrne , Seymour Papert , Alexander Repenning , Linda M. Seiter , Linda L. Werner , Jeannette M. Wing | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Begriffe KB IB clear | AgentSheets , Algorithmusalgorithm , computational thinkingcomputational thinking , Computercomputer , Datendata , Denkenthinking , design thinking , Dr. Scratch , Efficiency (Usability-Dimension)Efficiency , Informationinformation , Komplexitätcomplexity , Problemproblem , Problemlösefähigkeitproblem solving skills , Programmierenprogramming , Rekursionrecursion , Simulation , Systemsystem , Systemdenkensystems thinking , UsabilityUsability , Versuch und Irrtumtrial and error , Visualisierungvisualization | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bücher |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Texte |
|
Dieser wissenschaftliche Zeitschriftenartikel erwähnt vermutlich nicht ...
Nicht erwähnte Begriffe | AgentCubes |
Tagcloud
Zitationsgraph
Zitationsgraph (Beta-Test mit vis.js)
Zeitleiste
17 Erwähnungen
- Measuring Computational Thinking - Adapting a Performance Test and a self-assessment instrument for germen-speaking countries (Josef Guggemos, Sabine Seufert, Marcos Román-González)
- Empfehlungen für gendersensible MINT-Angebote (Bernadette Spieler)
- Proceedings of the 14th Workshop in Primary and Secondary Computing Education, WiPSCE 2019, Glasgow, Scotland, UK, October 23-25, 2019 (2019)
- Development of a Questionnaire on Self-concept, Motivational Beliefs, and Attitude Towards Programming (Luzia Leifheit, Katerina Tsarava, Korbinian Moeller, Klaus Ostermann, Jessika Golle, Ulrich Trautwein, Manuel Ninaus) (2019)
- Cognitive Correlates of Computational Thinking - Evaluation of a Blended Unplugged/Plugged-In Course (Katerina Tsarava, Luzia Leifheit, Manuel Ninaus, Marcos Román-González, Martin V. Butz, Jessika Golle, Ulrich Trautwein, Korbinian Moeller) (2019)
- ICILS 2018 #Deutschland - Computer- und informationsbezogene Kompetenzen von Schülerinnen und Schülern im zweiten internationalen Vergleich und Kompetenzen im Bereich Computational Thinking (Birgit Eickelmann, Wilfried Bos, Julia Gerick, Frank Goldhammer, Heike Schaumburg, Knut Schwippert, Martin Senkbeil, Jan Vahrenhold) (2019)
- Non-Formal and Informal Science Learning in the ICT Era (Michail N. Giannakos) (2020)
- 5. Music and Coding as an Approach to a Broad-Based Computational Literacy (Michael S. Horn, Amartya Banerjee, Melanie West)
- Vorstellungen von Lernenden zum Aufbau von Informatiksystemen - eine multimethodische Untersuchung von Lernvoraussetzungen zum Denken in Teilen von Ganzen (Nils Pancratz) (2021)
- Computational Thinking in Education - A Pedagogical Perspective (Aman Yadav, Ulf Dalvad Berthelsen) (2021)
- 2. Computational Thinking Today (Shuchi Grover)
- 6. Assessment of Computational Thinking (David Weintrop, Daisy Rutstein, Marie A. Bienkowski, Steven McGee)
- 8. Professional Development as a Bridge between Teacher Competencies and Computational Thinking Integration (Secil Caskurlu, Aman Yadav, Kyle Dunbar, Rafi Santo)
- Optimierung in der Medienpädagogik (Patrick Bettinger, Klaus Rummler, Karsten D. Wolf) (2021)
- Der Hochschullehrgang Coding und Robotik für Lehrkräfte an der Pädagogischen Hochschule Burgenland - Konzeption, Implementation und erste Ergebnisse einer Begleitevaluation (Thomas Leitgeb, Alexander Zimmermann, Wolfram Rollett)
- Teaching Coding in K-12 Schools - Research and Application (Therese Keane, Andrew Fluck) (2023)
- Teaching Coding in Kindergarten - Supporting Students’ Activity with Robot Coding Toys (Jessica F. Shumway, Jody Clarke-Midura, Victor R. Lee, Deborah Silvis, Lise E. Welch Bond, Joseph S. Kozlowski)
- Supporting Primary Students with Disabilities and Neurological Differences in Developing Digital Thinking Skills Through an Inclusive Game-Making Club (Matthew Harrison)
- Bildung für eine digitale Zukunft (Katharina Scheiter, Ingrid Gogolin) (2023)
- Kompetenzen für das Lernen mit digitalen Medien - Eine konzeptuelle Analyse (Emely Hoch, Tim Fütterer)
- WIPSCE '23 - The 18th WiPSCE Conference on Primary and Secondary Computing Education Research (Sue Sentance, Mareen Grillenberger) (2023)
- Making the Transition to Text-Based Programming - The Pilot Evaluation of a Computational Thinking Intervention for Primary School Students (Katrin Kunz, Korbinian Moeller, Manuel Ninaus, Ulrich Trautwein, Katerina Tsarava) (2023)
- Teaching Gender in MINT in der Pandemie - Chancen und Herausforderungen digitaler Transformation (Yves Jeanrenaud) (2023)
- DELFI 2024 (Sandra Schulz, Natalie Kiesler) (2024)
- Evaluating Task-Level Struggle Detection Methods in Intelligent Tutoring Systems for Programming (Jesper Dannath, Alina Deriyeva, Benjamin Paaßen) (2024)
Anderswo finden
Volltext dieses Dokuments
Demystifying computational thinking: Artikel als Volltext (: , 1559 kByte; : ) |
Anderswo suchen
Beat und dieser wissenschaftliche Zeitschriftenartikel
Beat hat Dieser wissenschaftliche Zeitschriftenartikel während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.).